Dynamic Antarctic ice sheet during the early to mid-Miocene.

نویسندگان

  • Edward Gasson
  • Robert M DeConto
  • David Pollard
  • Richard H Levy
چکیده

Geological data indicate that there were major variations in Antarctic ice sheet volume and extent during the early to mid-Miocene. Simulating such large-scale changes is problematic because of a strong hysteresis effect, which results in stability once the ice sheets have reached continental size. A relatively narrow range of atmospheric CO2 concentrations indicated by proxy records exacerbates this problem. Here, we are able to simulate large-scale variability of the early to mid-Miocene Antarctic ice sheet because of three developments in our modeling approach. (i) We use a climate-ice sheet coupling method utilizing a high-resolution atmospheric component to account for ice sheet-climate feedbacks. (ii) The ice sheet model includes recently proposed mechanisms for retreat into deep subglacial basins caused by ice-cliff failure and ice-shelf hydrofracture. (iii) We account for changes in the oxygen isotopic composition of the ice sheet by using isotope-enabled climate and ice sheet models. We compare our modeling results with ice-proximal records emerging from a sedimentological drill core from the Ross Sea (Andrill-2A) that is presented in a companion article. The variability in Antarctic ice volume that we simulate is equivalent to a seawater oxygen isotope signal of 0.52-0.66‰, or a sea level equivalent change of 30-36 m, for a range of atmospheric CO2 between 280 and 500 ppm and a changing astronomical configuration. This result represents a substantial advance in resolving the long-standing model data conflict of Miocene Antarctic ice sheet and sea level variability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-resolution ice-volume estimates for the early Miocene: Evidence for a dynamic ice sheet in Antarctica

Ice-volume estimates for the early Miocene (23–16 Ma ATS) were determined by applying dO to sea-level calibrations to high-resolution dO records from ODP Sites 1090 and 1218. These calibrated records indicate that ice-volume ranged between 50% and 125% of the present day East Antarctic Ice Sheet (EAIS) during most of the early Miocene (23–17 Ma). Maximum icevolume occurred at each of the early ...

متن کامل

Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene.

Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, th...

متن کامل

Were West Antarctic Ice Sheet grounding events in the Ross Sea a consequence of East Antarctic Ice Sheet expansion during the middle Miocene?

Seismic correlation of glacial unconformities from the Ross Sea outer continental shelf to chronostratigraphic control at DSDP sites 272 and 273 indicates that at least two West Antarctic Ice Sheet (WAIS) expansions occurred during the early part of the middle Miocene (i.e. well before completion of continental-scale expansion of the East Antarctic Ice Sheet (EAIS) inferred from N18O and eustat...

متن کامل

The evolution of pCO2, ice volume and climate during the middle Miocene

The middle Miocene Climatic Optimum (17–15 Ma; MCO) is a period of global warmth and relatively high CO2 and is thought to be associated with a significant retreat of the Antarctic Ice Sheet (AIS). We present here a new planktic foraminiferal dB record from 16.6 to 11.8 Ma from two deep ocean sites currently in equilibrium with the atmosphere with respect to CO2. These new data demonstrate that...

متن کامل

Evolution of the early Antarctic ice ages.

Understanding the stability of the early Antarctic ice cap in the geological past is of societal interest because present-day atmospheric CO2 concentrations have reached values comparable to those estimated for the Oligocene and the Early Miocene epochs. Here we analyze a new high-resolution deep-sea oxygen isotope (δ18O) record from the South Atlantic Ocean spanning an interval between 30.1 My...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 13  شماره 

صفحات  -

تاریخ انتشار 2016